Who Will Pay What?
Modeling the Distribution of Costs of Climate Change Policies

Kevin Perese
Congressional Budget Office
Tax Analysis Division

Federation of Tax Administrators
Revenue Estimating & Tax Research Conference
September 15, 2009
Des Moines, Iowa

Disclaimer

Analysis and conclusions presented here are my own and should not be interpreted as those of the Congressional Budget Office.
Overview

- Climate Change Modeling
- Linking Demographic, Tax, and Expenditures Data
- IO Model
- Results

Climate Change Modeling

- Cross-divisional work at CBO
 - Microsimulation of distributional effects small part
 - Estimating allowance price trajectory
 - Budgeting effects
 - International trade effects
 - International & Domestic offsets
 - Transportation & Electricity sector
Basic Problem

CO₂

And some other gases, too

Basic Solution

- Put a price on carbon
- Can be achieved directly with a tax, or indirectly with a “cap-and-trade” program
 Tax = price certain, quantity uncertain
 Cap = quantity certain, price uncertain
Why Microsimulation?

Distributional Analysis
- Analyze Regressivity/Progressivity of Policies
- Rank by income?
- Rank by expenditures? (permanent income hypothesis)
- Regional analysis

Database Preparations
- Standard CBO database for tax distribution analyses links the Census Bureau’s Current Population Survey with the Internal Revenue Service’s Statistics of Income data
- Need to match expenditures data to this database
 - 2006 Consumer Expenditures Survey data
Consumer Expenditure Survey

- Collects detailed expenditures information on households over 12 month period
- Designed to calculate basket weights in CPI calculation
- Two separate surveys: Interview & Diary
- Released as quarterly cross-sections, but we convert to annual panel files
Consumer Expenditure Survey

Average Annual Household Utility and Gasoline Expenditures by Income Quintile, 2007

<table>
<thead>
<tr>
<th>Dollars</th>
<th>All Households</th>
<th>Lowest</th>
<th>Second</th>
<th>Middle</th>
<th>Fourth</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>1,303</td>
<td>848</td>
<td>1,104</td>
<td>1,285</td>
<td>1,446</td>
<td>1,831</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>480</td>
<td>273</td>
<td>369</td>
<td>428</td>
<td>559</td>
<td>773</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>151</td>
<td>82</td>
<td>123</td>
<td>127</td>
<td>177</td>
<td>243</td>
</tr>
<tr>
<td>Total Utilities</td>
<td>1,934</td>
<td>1,203</td>
<td>1,596</td>
<td>1,840</td>
<td>2,181</td>
<td>2,847</td>
</tr>
<tr>
<td>Gasoline & Motor Oil</td>
<td>2,384</td>
<td>1,046</td>
<td>1,768</td>
<td>2,418</td>
<td>2,988</td>
<td>3,696</td>
</tr>
<tr>
<td>Total Energy-Intensive Expenditures</td>
<td>4,318</td>
<td>2,249</td>
<td>3,364</td>
<td>4,258</td>
<td>5,169</td>
<td>6,543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent of Income</th>
<th>All Households</th>
<th>Lowest</th>
<th>Second</th>
<th>Middle</th>
<th>Fourth</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>2.1</td>
<td>8.1</td>
<td>4.0</td>
<td>2.8</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0.8</td>
<td>2.6</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>0.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Utilities</td>
<td>3.1</td>
<td>11.4</td>
<td>5.8</td>
<td>4.0</td>
<td>3.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Gasoline & Motor Oil</td>
<td>3.8</td>
<td>9.9</td>
<td>6.4</td>
<td>5.2</td>
<td>4.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Total Energy-Intensive Expenditures</td>
<td>6.8</td>
<td>21.4</td>
<td>12.2</td>
<td>9.2</td>
<td>7.1</td>
<td>4.1</td>
</tr>
</tbody>
</table>

CE Adjustments: Renters

Missing Critical Information for 6% of the Sample
CE Adjustments: Diary Data

Multiplicative Adjustment Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Away</td>
<td>* 1.617609</td>
</tr>
<tr>
<td>Food at Home</td>
<td>* 0.823904</td>
</tr>
<tr>
<td>Alcohol Away</td>
<td>* 1.217858</td>
</tr>
<tr>
<td>Alcohol at Home</td>
<td>* 1.634421</td>
</tr>
<tr>
<td>Clothing and Shoes</td>
<td>* 1.603027</td>
</tr>
<tr>
<td>Furniture</td>
<td>* 1.321044</td>
</tr>
</tbody>
</table>

Additive Adjustment Amounts

<table>
<thead>
<tr>
<th>Category</th>
<th>Adjustment Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toiletries</td>
<td>+ $317.00</td>
</tr>
<tr>
<td>Nondurables</td>
<td>+ $594.47</td>
</tr>
<tr>
<td>Prescription Drugs</td>
<td>+ $130.88</td>
</tr>
<tr>
<td>Business Services</td>
<td>+ $36.79</td>
</tr>
<tr>
<td>Tolls</td>
<td>+ $14.60</td>
</tr>
<tr>
<td>Other Education</td>
<td>+ $70.55</td>
</tr>
</tbody>
</table>

Imputing Expenditures

Two Methods Used:

- Hot deck imputation
 - Single households <$150,000 income
 - Married households <$300,000 income

- Regression imputation for high income households
Statistical Match SOI/CPS & CE

- Hot deck routine with both rigid and flexible matching criteria
 - Fixed: Region
 - Flexible: Age (+/- 1 year increments)
 Income (+/- 2% increments)
 Family Type (+/- 1 child only)
- Use CPS Income as bridge to SOI income
- Carry over expenditure ratios

High Income Regressions

- Both income and expenditure amounts are top coded
- Impute expenditure amounts based on regression models for high-income households
- Separate models for electricity, gasoline, fuel oil, natural gas, and total expenditures
High Income Regressions

- Estimate electricity, gasoline, fuel oil, natural gas expenditures
- Estimate total expenditures
- Distribute non-carbon intensive expenditures based on observed distribution in high income CE households
High Income Regressions

In(Consumption) by ln(Pre-tax-Income), CEX 2004

High Income Regressions

Ln(Consumption) = Ln(Pre-tax-Income)
Now What?

IO Model

- Need to simulate the effects a carbon cap-and-trade policy will have on consumer prices
- Leontief (1941)
- Fullerton (1995); Metcalf (1998, etc.)
IO Model: Make & Use Tables

<table>
<thead>
<tr>
<th>Industries 1, 2, ...</th>
<th>Commodities</th>
<th>Total Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Make Table</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Input</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

V: Make matrix, industry-by-commodity (I x c)
g: Total commodity output, column vector (c x 1)
g: Total industry output, row column vector (I x 1)

<table>
<thead>
<tr>
<th>Industries 1, 2, ...</th>
<th>Commodities 1, 2, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use Table U</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Value Added</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Commodity Output</td>
<td>g'</td>
</tr>
</tbody>
</table>

U: Intermediate use matrix, commodity-by-industry (c x I)
g: Total commodity output, column vector (c x 1)
g: Total industry output, row column vector (I x 1)
E: Final Demand (c x k)
W: Value Added (I x I)

IO Model: Basic

\[
a_{i1}p_1 + a_{i2}p_2 + \cdots + a_{im}p_m + v_i = p_i, \\
a_{11}p_1 + a_{12}p_2 + \cdots + a_{1m}p_m + v_1 = p_1, \\
\vdots \quad \vdots \quad \cdots \quad \vdots \quad \vdots \\
a_{m1}p_1 + a_{m2}p_2 + \cdots + a_{mm}p_m + v_m = p_m.
\]
IO Model: Basic

\[a_1 p_1 + a_2 p_2 + \cdots + a_n p_n + v_i = p_i, \]
\[a_1 p_1 + a_2 p_2 + \cdots + a_n p_n + v_i = p_i, \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]
\[a_1 p_1 + a_2 p_2 + \cdots + a_n p_n + v_i = p_i, \]

\[A'P + V = P \]
\[P = (I - A')^{-1}V \]

And then we add a Tax Matrix

\[P = (I - A')^{-1}(V + (AT)'l) \]
IO Model
Imports & Non-Combustive Uses

\[a_1^t p_1^t + a_2^t p_2^t + a_3^t p_3^t + \cdots + a_n^t p_n^t + \cdots + a_1^n p_1^n + a_2^n p_2^n + \cdots + a_n^n p_n^n + v_i = P_i^t, \]

\[\vdots = \vdots \]

\[a_1^t p_1^t + a_2^t p_2^t + a_3^t p_3^t + \cdots + a_n^t p_n^t + a_1^n p_1^n + a_2^n p_2^n + \cdots + a_n^n p_n^n + v_i = P_i^t, \]

\[P^d = (I - A_d)^i (V + (A_d T) I + \{A_d P^m}) \]

Additional adjustments are made for non-combustive uses of fossil fuels
(but I won’t bore you further with the equations)

IO Model Results

- Policy Simulation based on 2006 economy
- Allowance price of $19 per metric ton of CO₂
 (including imported petroleum products)
- Total allowance revenues of about 0.7% of GDP
IO Model: Price Change Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>0.5%</td>
</tr>
<tr>
<td>Clothing</td>
<td>0.2%</td>
</tr>
<tr>
<td>Nondurables</td>
<td>0.4%</td>
</tr>
<tr>
<td>Electricity</td>
<td>8.8%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>11.4%</td>
</tr>
<tr>
<td>Gasoline</td>
<td>4.2%</td>
</tr>
<tr>
<td>All Expenditures</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Waxman-Markey Distribution
(2020 policy in 2010 $s)

Based on CBO letter to Senator Camp, June 19, 2009
Waxman-Markey Distribution
(2020 policy in 2010 $s)

Based on CBO letter to Senator Camp, June 19, 2009

Waxman-Markey Distribution
(2020 policy in 2010 $s)

Based on CBO letter to Senator Camp, June 19, 2009
Waxman-Markey Distribution
(2020 policy in 2010 $s)

Based on CBO letter to Senator Camp, June 19, 2009